Abstract
The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.
Highlights
Artificial ocean iron fertilization (OIF) of high nutrient low chlorophyll (HNLC) oceanic waters and subsequent carbon drawdown [1] could provide a contribution to mitigation of anthropogenic atmospheric CO2 [2,3,4]
Sediment traps were deployed at the +Fe and HNLC sites at 3195 and 3183 m water depth, respectively [12,18]
Molar C/N ratios of organic matter reaching the sediment traps were close to the Redfield ratio (,6.6), varying from 4.2 to 8.0
Summary
Artificial ocean iron fertilization (OIF) of high nutrient low chlorophyll (HNLC) oceanic waters and subsequent carbon drawdown [1] could provide a contribution to mitigation of anthropogenic atmospheric CO2 [2,3,4]. While spatial and temporal variations in total biomass and gross taxon composition of deep-sea metazoan macrofauna and megafauna appear to reflect changes in upper ocean conditions [7,8,9], the relationship between species distributions and surface ocean productivity is not understood. This information is vital in assessing the consequences of large-scale manipulations of surface ocean productivity and carbon sequestration by artificial OIF [10].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.