Abstract

The phase separation of diblock copolymers containing some energetically neutral/biased nanoparticles is studied by means of large-scale dissipative particle dynamics (DPD) simulations. The effects of the volume fraction of nanoparticles, the size of nanoparticles, and the interaction strength between nanoparticles and blocks on the lamellar phase separation of diblock copolymers are investigated. When these effects are up to a critical value, the diblock copolymer nanocomposites can form a new bicontinuous morphology, which is well consistent with the experimental results. It is also found that the degree of order of phase separation for a given system increases slightly and then decreases abruptly until the bicontinuous morphology is formed as the volume fraction of nanoparticles increases. Furthermore, we discuss the microphase transition through the position distributions of nanoparticles and present a phase diagram in terms of the nanoparticle volume fraction, size, and surface interaction strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call