Abstract

Improving heat exchanger's performance by increasing the overall heat transfer as well as minimising pressure drop is one of the promising fields of research to focus on. Nanofluids with higher thermal conductivity and better thermophysical properties can be applied in heat exchanger to increase the heat transfer rate. In the present study SiO2, TiO2 and Al2O3 are applied in a plate heat exchanger and the effects on thermophysical properties and heat transfer characteristics are compared with the base fluid. Since it is desired to minimize the pressure drop, the influence of nanofluid application on pressure drop and entropy generation is investigated. It is concluded that the thermal conductivity, heat transfer coefficient and heat transfer rate of the fluid increase by adding the nanoparticles and TiO2 and Al2O3 result in higher thermophysical properties in comparison with SiO2. The highest overall heat transfer coefficient was achieved by Al2O3 nanofluid, which was 308.69W/m2.K in 0.2% nanoparticle concentration. The related heat transfer rate was improved around 30% compared to SiO2 nanofluid. In terms of pressure drop, SiO2 shows the lowest pressure drop, and it was around 50% smaller than the pressure drop in case of using TiO2 and Al2O3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.