Abstract

Changes in transpiration and stomatal conductance and other characteristics of water relations, growth rate, and ABA content have been followed in short- and long-term experiments in two barley cultivars (cv. Michaelovsky and cv. Prairie) with contrasting drought resistance characteristics. The aim of this work was to reveal the importance of stomatal behavior in salt tolerance and also the involvement of ABA in its control. Salinity stress brought about a reduction in stomatal conductance in both cultivars, but the effect was initially more pronounced in the drought-tolerant cv. Prairie than in the drought-sensitive cv. Michaelovsky. The difference between the two cultivars changed with time, and later on transpiration and stomatal conductance became higher in Prairie than in Michaelovsky. In both the short and the long term, the extent of stomatal closure due to salinity correlated with the level of ABA accumulation in the leaves of the plants. Fast stomatal closure was likely to be responsible for growth resumption after an initial arrest by salt treatment and for the maintenance of extension growth later on, thus enabling its higher rate in Prairie than in Michaelovsky plants. Leaves of Prairie accumulated less toxic chloride ions, which may be the result of a lower transpiration rate observed during the first phase of salt treatment. A subsequent increase in stomatal conductance observed in Prairie is likely to ameliorate their gas exchange and maintain photosynthesis and growth. Thus, differences between the cultivars in the stomatal response to salinity changed with time, which may be why there are discrepancies in the attempts to relate stomatal conductance to salt tolerance observed in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.