Abstract
Bipolar disorder (BD) is a severe psychiatric disorder associated with social and functional impairment. Some studies have strongly suggested the involvement of oxidative stress in the pathophysiology of BD. Paradoxal sleep deprivation (PSD) in mice has been considered a good animal model of mania because it induces similar manic-like behavior, as well as producing the neurochemical alterations which have been observed in bipolar patients. Thus, the objective of the present study was to evaluate the effects of the antioxidant agent's n-acetylcysteine (Nac) and/or deferoxamine (DFX) on behavior and the oxidative stress parameters in the brains of mice submitted to the animal model of mania induced by PSD. The mice were treated for a period of seven days with saline solution (SAL), Nac, DFX or Nac plus DFX. The animals were subject to the PSD protocol for 36 h. Locomotor activity was then evaluated using the open-field test, and the oxidative stress parameters were subsequently evaluated in the hippocampus and frontal cortex of mice. The results showed PSD induced hyperactivity in mice, which is considered a manic-like behavior. In addition to this, PSD increased lipid peroxidation and oxidative damage to proteins, as well as causing alterations to antioxidant enzymes in the frontal cortex and hippocampus of mice. The Nac plus DFX adjunctive treatment prevented both the manic-like behavior and oxidative damage induced by PSD. Improving our understanding relating to oxidative damage in biomolecules, and the antioxidant mechanisms presented in the animal models of mania are important in helping to improve our knowledge concerning the pathophysiology and development of new therapeutical treatments for BD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.