Abstract

Toll-like receptors (TLRs) are a family of pattern-recognition receptors in innate immunity and provide a first line defense against pathogens and tissue injuries. In addition to important roles in infection, inflammation, and immune diseases, recent studies show that TLR signaling is involved in modulation of learning, memory, mood, and neurogenesis. Because MyD88 is essential for the downstream signaling of all TLRs, except TLR3, we investigated the effects of MyD88 deficiency (MyD88−/−) on behavioral functions in mice. Additionally, we recently demonstrated that a mouse model of Alzheimer's disease (AD) deficient for MyD88 had decreases in Aβ deposits and soluble Aβ in the brain as compared with MyD88 sufficient AD mouse models. Because accumulation of Aβ in the brain is postulated to be a causal event leading to cognitive deficits in AD, we investigated the effects of MyD88 deficiency on behavioral functions in the AD mouse model at 10 months of age. MyD88 deficient mice showed more anxiety in the elevated plus-maze. In the motor coordination tests, MyD88 deficient mice remained on a beam and a bar for a longer time, but with slower initial movement on the bar. In the Morris water maze test, MyD88 deficiency appeared to improve spatial learning irrespective of the transgene. Our findings suggest that the MyD88-dependent pathway contributes to behavioral functions in an AD mouse model and its control group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call