Abstract

The effects of neonatal monocular enucleation on the topographic representation of the ipsilateral visual field in the visual cortex of the rabbit were investigated, using electrophysiological recordings of multi-unit activity in area 17. Topography of receptive fields was determined in normal adult rabbits, adult rabbits monocularly enucleated on the day of birth and adult rabbits monocularly enucleated as adults. In normal rabbits and in adult enucleates, the projection from the ipsilateral eye is represented by a strip of cortex extending approximately 2 mm from the 17/18 border. In neonatal enucleates, the width of the area of cortex in which the projection from the ipsilateral eye is represented was approximately twice as large as normal. Visual topography was normal in the superior-inferior axis but was distorted in the nasotemporal axis. Our data suggest that the abnormal topography observed in the visual cortex of neonatally enucleated rabbits may play a major role in shaping the abnormal visual callosal projections observed in these animals. In addition, our data indicate that, following neonatal monocular enucleation, developmental abnormalities in the topography of geniculocortical projections can occur independently of any alteration in the retinogeniculate projection patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call