Abstract

Background6-[18F]fluoro-l-3,4-dihydroxyphenyl alanine ([18F]FDOPA) is a commonly used PET tracer for the detection and staging of neuroendocrine tumors. In neuroendocrine tumors, [18F]FDOPA is decarboxylated to [18F]dopamine via the enzyme amino acid decarboxylase (AADC), leading to increased uptake when there is increased AADC activity. Recently, in our hospital, a new GMP compliant multi-dose production of [18F]FDOPA has been developed, [18F]FDOPA-H, resulting in a higher activity yield, improved molar activity and a lower administered mass than the conventional method ([18F]FDOPA-L).AimsThis study aimed to investigate whether the difference in molar activity affects the [18F]FDOPA uptake at physiological sites and in tumor lesions, in patients with NET. It was anticipated that the specific uptake of [18F]FDOPA-H would be equal to or higher than [18F]FDOPA-L.MethodsWe retrospectively analyzed 49 patients with pathologically confirmed NETs and stable disease who underwent PET scanning using both [18F]FDOPA-H and [18F]FDOPA-L within a time span of 5 years. A total of 98 [18F]FDOPA scans (49 [18F]FDOPA-L and 49 [18F]FDOPA-H with average molar activities of 8 and 107 GBq/mmol) were analyzed. The SUVmean was calculated for physiological organ uptake and SUVmax for tumor lesions in both groups for comparison, and separately in subjects with low tumor load (1–2 lesions) and higher tumor load (3–10 lesions).ResultsComparable or slightly higher uptake was demonstrated in various physiological uptake sites in subjects scanned with [18F]FDOPA-H compared to [18F]FDOPA-L, with large overlap being present in the interquartile ranges. Tumor uptake was slightly higher in the [18F]FDOPA-H group with 3–10 lesion (SUVmax 6.83 vs. 5.19, p < 0.001). In the other groups, no significant differences were seen between H and L.Conclusion[18F]FDOPA-H provides a higher activity yield, offering the possibility to scan more patients with one single production. Minor differences were observed in SUV’s, with slight increases in uptake of [18F]FDOPA-H in comparison to [18F]FDOPA-L. This finding is not a concern for clinical practice, but could be of importance when quantifying follow-up scans while introducing new production methods with a higher molar activity of [18F]FDOPA.

Highlights

  • Neuroendocrine tumors (NETs) are a collection of rare tumors that are named based on the origin of their occurrence in the body and their histological features

  • Comparable or slightly higher uptake was demonstrated in various physiological uptake sites in subjects scanned with [­18F]FDOPA-H compared to ­[18F]FDOPA-L, with large overlap being present in the interquartile ranges

  • Tumor uptake was slightly higher in the ­[18F]FDOPA-H group with 3–10 lesion (SUVmax 6.83 vs. 5.19, p < 0.001)

Read more

Summary

Introduction

Neuroendocrine tumors (NETs) are a collection of rare tumors that are named based on the origin of their occurrence in the body and their histological features. They arise from neuro-endocrine tumor cells and may occur in various sites within the body. Patients with NETs may exhibit symptoms directly related to the Stormezand et al EJNMMI Res (2021) 11:88 release of endocrine substances from the tumor (secretory NETs) [1]. In these cases, even very small tumors (e.g., insulinomas) can cause symptoms. No significant differences in the striatum were detected

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call