Abstract

The present study investigated the effect of mischmetal as a modifier, as well as the effects of cooling rate and heat treatment on the hardness of non-modified and Sr-modified A319.1, A356.2 and A413.1 Al–Si casting alloys. The main aim of the study was to determine the effect of mischmetal in terms of mischmetal-containing intermetallic phases, as well as the effects of the chemical composition of the alloys, cooling rate and heat treatment on the corresponding hardness values obtained for the alloys in question. Two cooling rates were employed to provide estimated hardness levels of ∼85 and ∼110–115 BHN, levels conforming to levels most commonly observed in commercial applications of these alloys. The hardness measurements revealed that the hardness values of the as-cast alloys were higher at high cooling rates than at low cooling rates. Non-modified alloys (i.e. those with no Sr addition) displayed slightly higher hardness levels compared to the Sr-modified alloys. Also, the hardness decreased with the addition of mischmetal at both cooling rates. Two peak hardness values were observed at 200 °C/5 h and 240 °C/5 h at high cooling rates in the non-modified A319.1 alloy after aging at different temperatures between 155 °C/5 h and 240 °C/5 h, while the Sr-modified alloy showed only one peak at 200 °C/5 h. Two maximum hardness values were observed at 155 °C/5 h and 180 °C/5 h in both non-modified and Sr-modified alloys at low cooling rates. The alloys containing 0 and 2 wt% mischmetal additions exhibited the highest hardness values at both cooling rates; the hardness decreased with further mischmetal additions. Peak hardness was observed at 180 °C/5 h in the non-modified and Sr-modified A356.2 alloys under both cooling rate conditions after aging at different temperatures between 155 °C/5 h and 240 °C/5 h. The alloys free of mischmetal exhibited relatively higher levels of hardness than those containing mischmetal. The hardness decreased with increasing mischmetal addition. At the high cooling rates, the non-modified alloys displayed higher hardness values than the Sr-modified alloys, while an opposite trend was observed at the low cooling rate. The decrease in the hardness values may be attributed to the interaction of the mischmetal with the alloying elements Cu and Mg to form the various intermetallic phases observed. In tying up these elements, the volume fraction of the precipitation-hardening phases formed in the A319.1 and A356.2 alloys (i.e. the Al 2Cu and Mg 2Si phases) is significantly reduced, thereby decreasing the hardness. The addition of mischmetal was also reported to change the precipitation sequence of the Mg 2Si phase in the A356.2 alloy. In the case of the A413.1 alloy, the low content of alloying elements resulted in a weak response of the alloy to the age-hardening process at all aging temperature/time conditions (155 °C/5 h–240 °C/5 h), and at both cooling rates. Thus, no peak hardness was observable in these alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.