Abstract

Ethanol organosolv pretreatment is a green and effective deconstruction process for main components in lignocellulose biomass. Herein, balsa wood was firstly subjected to a modified ethanol/water solution (EWS) pretreatment with different Lewis acids catalysts (AlCl3, CuCl2, FeCl3) at 140–180 °C. The delignification ratios and structural characteristics of the dissociated lignin, enzymatic hydrolysis of cellulose in the pretreated substrates as well as the degradation products from hemicellulose during the pretreatment process were comprehensively investigated. Results showed that dissociation and depolymerization of lignin fragments was robust in AlCl3-catalyzed pretreatment than those by CuCl2 and FeCl3-catalyzed pretreatment. In detail, the results showed that the optimal delignification ratio and removal of the hemicelluloses occurred in AlCl3-catalyzed pretreatment. Moreover, the structural characterizations of lignin fractions by 2D-HSQC, 31P NMR and GPC also revealed that the obtained lignin has the advantages of small and homogeneous molecules as well as abundant functional groups. As a result of adequate removal of hemicellulose and lignin, the enzymatic digestibility of cellulose in the pretreated residue was significantly elevated. In short, the above findings are also in line with the concept of maximizing the utilization of bioresources, which will be beneficial for value-added applications of balsa wood in the biorefinery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call