Abstract

Microtubules are prominent cellular components of the mechanosensory and chemosensory sensilla associated with the insect cuticle, and a range of hypotheses have been proposed to account for their role in sensory transduction. Chemical agents such as colchicine and vinblastine, which dissociate microtubules, also interfere with transduction in these sensilla, and this has been attributed to their anti-microtubule activity. We have now examined the dynamic properties of sensory transduction in the mechanosensitive neuron of the cockroach femoral tactile spine, after the application of colchicine, vinblastine and lumicolchicine. Concurrently we have examined the ultrastructure of the same sensory ending by transmission electron microscopy. All of the drugs reduced the mechanical sensitivity o the receptor. Colchicine and vinblastine achieved this reduction without altering the dynamic properties of the receptor but lumicolchicine changed the dynamic response, and increased the relative sensitivity to rapid movements. Conduction velocity, another measure of neuronal function, which relies upon ionic currents flowing through the membrane, was reduced by all three drugs. The effects of the drugs upon the ultrastructure of the sensory ending were also disparate. In the case of colchicine there was complete dissociation of microtubules in the tubular body and distal dendrite before a total loss of mechanical sensitivity. Vinblastine was less effective in dissociating microtubules, although more effective in the reduction of mechanical sensitivity. With lumicolchicine the dominant morphological effect was a severe disruption of the dendritic membrane. We conclude from these experiments that microtubules are not essential in the transduction of mechanical stimuli by cuticular receptors and that the effects of these drugs upon mechanosensitivity are not directly related to their dissociation of the microtubules in the tubular body, but are more likely to arise from actions upon the cell membrane. These actions could include effects upon tubulin in the membrane or upon other membrane components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.