Abstract

The active interaction of neonatal animals with their environment has been shown to be a decisive factor in the postnatal development of sensory systems, which demonstrates a critical period in their maturation. The direct demonstration of such a dependence on the rearing environment has not been demonstrated for motor system function. Nor has the role of gravity in mammalian motor system development been investigated. Here we report the results of two space flight missions examining the effect of removing gravity on the development of surface righting. Since the essential stimulus that drives this synergy, gravitation, was missing, righting did not occur while the animals were in the microgravity environment. We hypothesize that this absence of contextual motor experience arrested the maturation of the motor tactics for surface righting. Such effects were permanent in rats spending 16 days (from postnatal day (P), P14 to P30), but were transient in animals spending nine days (from P15 to P24) in microgravity. Thus, active, contextual interaction with the environment during a critical period of development is necessary for the postnatal maturation of motor tactics as exemplified by surface righting, and such events must occur within a particular time period. Further, Earth's gravitational field is not assumed by the developing motor system. Rather, postnatal motor system development is appropriate to the gravitational field in which the animal is reared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call