Abstract

AbstractIntroduced stoats (Mustela erminea) are important invasive predators in southern beech (Nothofagus sp.) forests in New Zealand. In these forests, one of their primary prey species – introduced house mice (Mus musculus), fluctuate dramatically between years, driven by the irregular heavy seed‐fall (masting) of the beech trees. We examined the effects of mice on stoats in this system by comparing the weights, age structure and population densities of stoats caught on two large islands in Fiordland, New Zealand – one that has mice (Resolution Island) and one that does not (Secretary Island). On Resolution Island, the stoat population showed a history of recruitment spikes and troughs linked to beech masting, whereas the Secretary Island population had more constant recruitment, indicating that rodents are probably the primary cause for the ‘boom and bust’ population cycle of stoats in beech forests. Resolutions Island stoats were 10% heavier on average than Secretary Island stoats, supporting the hypothesis that the availability of larger prey (mice verses wētā) leads to larger stoats. Beech masting years on this island were also correlated with a higher weight for stoats born in the year of the masting event. The detailed demographic information on the stoat populations of these two islands supports previously suggested interactions among mice, stoats and beech masting. These interactions may have important consequences for the endemic species that interact with fluctuating populations of mice and stoats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.