Abstract
The effects of methyl mercury hydroxide (MeHg) on the in vitro polymerization and depolymerization of microtubules were studied. Polymerization was totally inhibited at 3.0 × 10 −5 m MeHg and depolymerization occurred at concentrations above 1.0 × 10 −5 m MeHg, reaching a maximal rate of −0.33%/min at 5.0 × 10 −5 m MeHg. At or above 1.0 × 10 −4 m MeHg, a mercury-protein aggregate formed in both the polymerization and depolymerization systems. Fifteen free sulfhydryl groups per tubulin dimer were determined, and MeHg bound to all 15. When MeHg bound to only 2 free sulfhydryl groups per dimer, it inhibited polymerization. MeHg bound to free sulfhydryl groups exposed uniquely on the surface of microtubules, as well as those free sulfhydryl groups exposed on the ends. These results show MeHg in vitro to be a potent microtubule assembly inhibitor at ratios stoichiometric with the tubulin dimer. The effects of MeHg on microtubules are presumably mediated through MeHg binding to free sulfhydryl groups both on the ends and on the surface of microtubules. The presence of binding sites (free sulfhydryl groups) on the microtubule surface suggests multiple classes of binding sites for MeHg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.