Abstract

The gas phase structures and internal dynamics of N,N-diethylacetamide were determined with very high accuracy using a combination of molecular beam Fourier-transform microwave spectroscopy and quantum chemical calculations at high levels. Conformational studies yielded five stable conformers with C1 symmetry. The two most energetically favorable conformers, conformer I and II, could be found in the experimental spectrum. For both conformers, quadrupole hyperfine splittings of the (14)N nucleus and torsional fine splittings due to the internal rotation of the acetyl methyl group occurred in the same order of magnitude and were fully assigned. The rotational constants, centrifugal distortion constants as well as the quadrupole coupling constants of the (14)N nucleus were determined and fitted to experimental accuracy. The V3 potentials were found to be 517.04(13) cm(-1) and 619.48(91) cm(-1) for conformer I and II, respectively, and compared to the V3 potentials found in other acetamides. Highly accurate CCSD(T) and DMC calculations were carried out for calculating the barriers to internal rotation in comparison with the experimentally deduced V3 values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.