Abstract

In this study, the effects of Hg2+ shock on the removal efficiencies for organic matters and nutrient, enzyme activities, and microbial community structures in lab-scale sequencing batch reactor (SBR) were investigated. The results showed that the short-term exposure (6 h) to Hg2+ at 0.05 mM significantly reduced the removal efficiencies of dissolved organic carbon (DOC), ammonium-nitrogen (NH4+-N) and orthophosphate (PO43--P). At lower concentration (0.01 mM) and prolonged (30 days) exposure condition, NH4+-N removal was severely inhibited, and it was recovered after 15 days of restoration. Higher levels of reactive oxygen species (ROS), catalase (CAT) and superoxide dismutase (SOD) activities were detected in the Hg2+ shocked reactor and eventually restored to the control level after 60 days of restoration. No increase in the release of lactate dehydrogenase (LDH) was observed under both short-term and long-term shock conditions, indicating no irreversible damage to the cell membrane. The relative abundance of genus Zoogloea and Paracoccus were decreased after Hg2+ shock, which implies these microorganisms may be sensitive to heavy metal exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.