Abstract
The effects of melatonin and dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) intraperitoneal administration on the rhythms of free amino acids content in the retina of rats were studied. The authors found that the levels of those amino acids, which are protein constituents but not neurotransmitters in the rat retina, change diurnally with maximum at 3-6 h after light onset. Diurnal changes of Ala, Arg, Asn, Ile, Met, Ser, Trp, and Val content persisted in the retina of rats maintained at constant darkness. This fact confirms the true circadian nature of these rhythms. Constant lighting abolished diurnal changes of the content of all amino acids with the exception of Trp. Daytime but not nighttime administration of melatonin decreased the levels of Ala, Asn, Gln, Ile, Met, and Ser down to nocturnal values. Diurnal changes of amino acids content vanished in melatonin-injected rats. The effect of melatonin administration disappeared when the protein synthesis was inhibited by cycloheximide. The effect of intraperitoneal administration of L-DOPA on the levels of free amino acids was opposite the effect of melatonin administration. L-DOPA increased nocturnal levels of Gly, Thr, Trp, and Val but had no effect on the daytime amino acids content. As in the case of melatonin administration, significant diurnal changes of amino acid levels disappeared in L-DOPA-injected rats. The authors hypothesize that melatonin and dopamine can serve as zeitgebers-antagonists of amino acids content rhythms in the rat retina.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.