Abstract

1. The effects of mechanical loading and changes of length on the contraction of single guinea-pig ventricular myocytes has been investigated. 2. Cell shortening was monitored during isotonic contractions (in which the cell shortened freely) and after attaching carbon fibres of known compliance to the ends of the cell, so that the cell contracted auxotonically (the cell both shortened and developed force). 3. Mechanically loading the cells decreased the amount of shortening during a contraction and abbreviated the contraction. There were, however, no consistent changes in the action potential or the [Ca2+]i transient (measured with the fluorescent dye fura-2). 4. Increasing stimulation rate increased the size of the contraction and the [Ca2+]i transient in both isotonic and auxotonic conditions. The increase in the size of the contraction induced by an increase in stimulation rate was greater in auxotonic conditions but the increase in the size of the [Ca2+]i transient was not. 5. When cells were stretched, there was a step increase in the size of the contraction and a prolongation of its time course. However, neither the size nor the time course of the accompanying [Ca2+]i transient was significantly altered by this intervention. 6. When a stretch was maintained, a further, slow increase in the size of the contraction occurred during the following 3-11 min, in about half the cells studied. The probability of this slow response occurring was increased if the initial degree of activation of the cell was decreased. 7. These data suggest that the mechanisms underlying the responses to mechanical loading and changes of length are the same in both multicellular and single cell preparations of cardiac muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.