Abstract

The aim of this study was to investigate the effects of exogenous endothelial progenitor cells (EPCs) on the growth and invasiveness of glioma in vivo to provide an experimental basis for the value and safety of using magnetically labeled EPCs as target vectors to detect early infiltration of glioma. EPCs were collected from the spleens of healthy Sprague-Dawley rats, made EPCs conditioned medium after identification. Four models of Sprague-Dawley rat glioma (60 rats in total) were established as a control and three experimental groups (group A, B, and C). In the control group, orthotopic transplantation of C6 glioma cells was performed. Compared to the control group, EPCs conditioned medium was added in group A and P7228-labeled EPCs were added in group B. In group C, P7228-labeled EPCs were transplanted via the tail vein. Magnetic resonance imaging and perfusion-weighted imaging were performed on several days. Tumor microvascular density and vascular endothelial growth factor expression were determined through immunohistochemistry. In group C, hypointense areas were detected at the periphery of the tumor on the first day after transplantation of EPCs, and more hypointense areas were found inside the tumor over time. Tumor size in all four groups developed significantly with increasing time (P < .01), but there was no marked difference among these groups at the same time (P > .05). No remarkable differences in microvascular density and cells positive for vascular endothelial growth factor were found at the same time among the four groups (P > .05). Both magnetic resonance imaging and immunohistochemical findings confirmed that exogenous EPCs could not affect the biologic behavior of C6 glioma cells in vivo through a paracrine effect or by direct cellular interaction. Therefore, exogenous EPCs could not exert significant promoting effects on glioma growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call