Abstract

Recently, much interest has been given to the role of glutamatergic N-methyl-D-aspartate receptors (NMDA) in sensory gating, such as prepulse inhibition (PPI) and reduction of the P50 evoked response potential (ERP). Currently, mainly animal data are available describing the role of NMDA receptors in these stimulus evaluation processes. Human data are virtually lacking and are potentially important, for instance for the understanding of sensory gating deficits observed in schizophrenia. Therefore, the effects of the NMDA antagonist ketamine, in a dose of 0.3 mg/kg i.v., on concurrent assessment of PPI and P50 reduction was studied in 18 healthy male volunteers. Ketamine was administered in a pseudo-steady state model with a subacute loading dose. In addition, the effects of ketamine on behavior, vital signs, homovanillic acid (HVA) plasma levels and secretion of cortisol and luteinizing hormone (LH) were also determined. Ketamine did not significantly alter PPI or the reduction of the P50 ERP. A small but significant increase in Brief Psychiatric Rating Scale (BPRS) total scores and BPRS composite scores "thinking disorder" and "withdrawal/retardation" was observed. Several subjects experienced visual perceptional alterations, but complex hallucinations did not occur. Ketamine induced mild analgesia and coordination problems. In addition, ketamine induced a marked rise in cortisol secretion, while LH secretion was not affected. Finally, systolic and diastolic, blood pressure and heart rate increased during ketamine infusion. Although in humans NMDA receptors may not be involved in the regulation of PPI and P50 reduction, the most likely explanation for the lack of effect of ketamine on these sensory gating paradigms is the dose used in this experiment. However, using a higher dose is hampered by the aspecificity of racemic ketamine. Future studies should use the enantiomer S-ketamine, which is more specific to NMDA receptors, to evaluate the involvement of NMDA receptors in these neurophysiological processes further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.