Abstract

A field experiment was conducted from 1983 to 1992 in Tsukuba, Japan to investigate the effects of tillage on soil conditions and crop growth in a light-colored Andosol. Three tillage methods (NT: no-tillage, RT: no-tillage for summer cropping and moldboard plowing for winter cropping, and CT: conventional rotary tillage to a depth of 15 cm) were employed in combination with crop residue application (+R, −R) and fused magnesium phosphate (FMP) fertilization (+P, −P). Under the combination of NT and +R, diurnal variation of soil temperature at a depth of 5 cm was smaller during the summer cropping season and soil temperature in the daytime was lower during the winter cropping season than under CT. Soil inorganic N concentration at a depth of 0–30 cm was +R > −R and NT > RT > CT. The early growth of summer crops was accelerated under NT in comparison with CT, and yields were higher under NT and RT in comparison with CT. On the other hand, winter crop yields were significantly reduced under NT, while they were still higher under RT in comparison with CT. Yields were higher with +R and +P application, respectively, and these effects were more pronounced in winter cropping. The positive effect of FMP fertilization was greater in combination with NT, and that of residue treatment was greater in combination with RT and NT than with CT. In conclusion, the best tillage practice for Andosols on the Kanto Plain is RT, i.e. a combination of NT for summer cropping and CT for winter cropping. The application of NT for winter cropping is not recommended, although the application of phosphate and crop residues could reduce the risk of yield reduction, because of improved soil nutrient status and moderation of diurnal soil temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.