Abstract
The loss of longitudinal connectivity affects river systems globally, being one of the leading causes of the freshwater biodiversity crisis. Barriers alter the dispersal of aquatic organisms and limit the exchange of species between local communities, disrupting metacommunity dynamics. However, the interplay between connectivity losses due to dams and other drivers of metacommunity structure, such as the configuration of the river network, needs to be explored. In this paper, we analyzed the response of fish communities to the network position and the fragmentation induced by dams while controlling for human pressures and environmental gradients. We studied three large European catchments covering a fragmentation gradient: Upper Danube (Austrian section), Ebro (Spain), and Odra/Oder (Poland). We quantified fragmentation through reach-scaled connectivity indices that account for the position of barriers along the dendritic network and the dispersal capacity of the organisms. We used generalized linear models to explain species richness and Local Contributions to Beta Diversity (LCBD) and multilinear regressions on the distance matrix to describe Beta Diversity and its Replacement and Richness Difference components. Results show that species richness was not affected by fragmentation. Network centrality metrics were relevant drivers of beta diversity for catchments with lower fragmentation (Ebro, Odra), and fragmentation indices were strong beta diversity predictors for the catchment with higher fragmentation (Danube). We conclude that in highly fragmented catchments, the effects of network centrality/isolation on biodiversity could be masked by the effects of dam fragmentation. In such catchments, metapopulation and metacommunity dynamics can be strongly altered by barriers, and the restoration of longitudinal connectivity (i.e. the natural centrality/isolation gradient) is urgent to prevent local extinctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.