Abstract

The addition of fertilizers is indispensable in agricultural production, and currently, there is a wide variety of new types of fertilizers available. For example, commonly used are stabilized fertilizers with inhibitors and coated slow-release fertilizers, among others. However, the long-term effects of these fertilizers, when applied continuously are still uncertain. This study will provide scientific and theoretical support for the development and promotion of these fertilizers. A 16-year paddy field with brown soil treated with different urease and nitrification inhibitors, sulfur-coated urea (SCU), and resin-coated urea (PCU) was studied. The study showed that long-term use of conventional urea nitrogen fertilizer resulted in a significant reduction in soil total phosphorus (TP). Long-term application of NBPT and conventional urea significantly increased soil organic matter (SOM). Moreover, except for HQ and NBPT+DMPP, the prolonged application of new urea fertilizers also significantly enhanced soil total potassium (TK). Application of SCU fertilizer in brown soil type paddy fields resulted in a significant decrease in soil pH over time. However, changes in pH had no effect on the abundance of ammonia-oxidizing bacteria (AOB), as AOB was mainly affected by soil-available N. DMPP, HQ+DCD, NBPT+DMPP, SCU, and PCU significantly reduced the 16S rRNA gene copy number of soil bacteria, with the greatest effect of coated urea fertilizer (SCU and PCU). Long-term application of stable urea fertilizer with HQ significantly reduced the bacterial community in paddy soil. Conversely, HQ+DCD-stabilizede urea fertilizer significantly increased the population structure and abundance of Basidiomycota fungi while decreasing the population structure and abundance of Rozellomycota fungi. DMPP-stabilized urea fertilizer notably increased the population structure and abundance of Ascomycota fungi while decreasing the population structure and abundance of Rozellomycota and Chytridiomycota fungi. Furthermore, HQ-stabilized urea fertilizer significantly reduced the population structure and abundance of Chytridiomycota fungi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call