Abstract

We have examined the effects of local DNA sequence on the interaction of distamycin, Hoechst 33258, echinomycin, actinomycin and mithramycin with their preferred binding sites using a series of DNA fragments that contain every symmetrical hexanucleotide sequence. In several instances we find that the affinity for the ligands' preferred binding sites is affected by the hexanucleotide context in which they are located. The AT-selective minor groove binding ligand Hoechst 33258 shows a 200-fold difference in binding to the 16 different X(A/T) 4Y sites; the strongest binding is to AAATTT and the weakest is to (G/C)TTAA(C/G). Although TTAA is generally a poor binding site, ATTAAT is better than TTTAAA and they are both much better than GTTAAC and CTTAAG. Similarly, TTATAA and ATATAT are better binding sites than GTATAC and CTATAG. In contrast, distamycin shows less discrimination between the various X(A/T) 4Y sites, with a 20-fold difference between the best [(A/T)AATT(T/A)] and worst [GATATC and (G/C)TTAA(C/G)] sites. Although actinomycin binds to GpC it shows little or no interaction with any of the GGCC sites, yet shows only a six-fold variation in affinities for the other XYGCXY sites. Echinomycin binds to CpG yet shows no binding to TTCGAA, TGCGCA and AGCGCT, while the best binding is to AACGTT. The tetranucleotides CCGG and ACGT produce consistently good binding sites, irrespective of the surrounding sequences, while the interaction with TCGA and GCGC is sensitive to the hexanucleotide context. Hexanucleotides with a central GCGC, flanked by A and T are weaker echinomycin sites than those flanked by G and C, especially CGCGCG. The best X(G/C) 4Y binding sites for mithramycin were located at AGCGCT and GGGCCC, and the worst at CCCGGG and TCCGGA. These footprinting fragments are valuable tools for comparing the binding of ligands to all the potential symmetrical hexanucleotides and provide insights into the effects of local DNA sequence on ligand-DNA interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.