Abstract

Barley seedlings (Hordeum vulgare L.) were grown hydroponically with (induced) or without (uninduced) nitrate in a light/dark cycle with high photon flux density to determine the effects of light on time courses, induction and kinetics of net nitrate uptake. Nitrate uptake was induced by external nitrate in both light and dark and was prevented by 1 mol m–3 p‐fluorophenylalanine. In high light, nitrate uptake was about 2‐fold higher than in low light. During time course experiments the uptake rates oscillated due to daily light–dark changes. Rates of nitrate uptake also increased at about 2200 h during continuous darkness. This increase coincided approximately with the time at which the dark period started during the previous culture of the plants, indicating that it was due to a mechanism associated with an endogenous diurnal rhythm. When calculating the kinetics of nitrate uptake, a model with two saturable systems, including a high‐affinity system (HATS) and a low‐affinity system (LATS), gave the best fit to data in all treatments. The apparent affinity of the HATS ranged from 7·7 to 12·2 mmol m–3 in induced plants in all light conditions. The effect of light on the HATS was mainly an increase of apparent Vmax in the step from low to high light. In uninduced plants the HATS operated at a very low activity which was strongly enhanced during induction. Interpretation of the calculated kinetics of the LATS was much more difficult on the basis of net uptake data. The apparent affinity of the LATS increased from 24·3 mol m–3 in low light up to 0·17 mol m–3 after acceleration in high light. These extreme changes in apparent affinity of the LATS could not be explained satisfactorily, and the nature of this system is also discussed with respect to the method used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.