Abstract
Density functional theory calculations have been used to investigate the hydrogenation of acetophenone (ACP) catalysed by the RuH(2)(diphosphine)(diamine) complexes with emphasis on the effect of the structure of the diphosphine and diamine ligands on the enantioselectivity. The computed reaction coordinate diagrams of RuH(2)(diphosphine)[(S,S)-DPEN] catalysed reactions with different (S)-diphosphine ligands (XylBINAP, TolBINAP, and BINAP) show that the presence of two methyl groups in the meta position is critical to obtaining a high difference in activation energy for the reaction pathways associated with the (R)- and (S)-alcohols, and consequently high enantioselectivity. The effect of the diamine structure while keeping the TolBINAP and XylBINAP fixed has also been analysed. To enhance the enantioselectivity of the TolBINAP system, the addition of two methyl groups and the removal of a phenyl group of the diamine (DMAPEN) offer the necessary steric interactions. We conclude by reporting a correlation between the enantiomeric excess and the difference in the computed activation energies of the two most favourable (S) and (R) reaction pathways, which shows that the computational procedure adopted could be used to predict the enantiomeric excess of ketone hydrogenation reactions catalysed by the Noyori-type catalysts, and assist in the choice of ligand when optimising the enantiomeric excess.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.