Abstract

The mechanisms controlling transport and retention of microplastics (MPs) in riverine systems are not understood well. We investigated the impact of large roughness elements (LREs) on in-stream transport and retention of the ubiquitous polystyrene-microplastics (PS-MPs). Scaled experiments were conducted with and without LREs under various shear Reynolds numbers (Re*) in an ecohydraulics flume. Our results, for the first time, demonstrated a clear dependence of the MPs’ velocity on Re* in LREs-dominated channel. Two distinct regimes and thresholds were identified: lower Re* (≤ 15,000) regime corresponding to higher velocities of MPs ({U}_{MPs}^{*}> 0.45), and higher Re* (> 15,000) to lower {U}_{MPs}^{*} (< 0.45). The presence and higher density of LREs increased Re*, decreased {U}_{MPs}^{*}, and enhanced the PS-MPs capture. The LREs-generated turbulence kinetic energy (TKE) was found to be a good predictor of PS-MPs transport and retention rates, indicating the effectiveness of LREs in retaining PS-MPs in streams and rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.