Abstract

The Community Climate Model version 2 (CCM2) of the National Center for Atmospheric Research (NCAR) was used to investigate the effects of the land-surface characteristics on the East Asian summer monsoon. Four numerical experiments were performed in this study. They include the control run, the biosphere–atmosphere transfer scheme (BATS) run, the heavy snow run, and the light snow run. The results show that CCM2 can reasonably simulate many characteristics of the East Asian summer monsoon, such as the 850-hPa southwesterlies, 200-hPa easterlies, high precipitation rate, two monsoon subsystems, the low-level subtropical high, and the upper level South Asian anticyclone. Nevertheless, the model still exhibits some systematic errors, including oversimulation of the temperature over the Eurasian continent, which in turn intensifies the monsoon circulations. In the BATS run, the model can significantly relieve the temperature bias over the continent in spring and early summer. However, the effect of BATS decreases in the summer due to excessive incoming solar radiation. The Eurasian continent is still occupied by an oversimulated thermal low in summer. In the heavy snow case, the high albedo of snow and larger soil moisture suppress the warming rate of the surface and atmosphere in the early summer and hence the cooler troposphere results in a weaker monsoon circulation. Moreover, anomalous cyclonic flows are found in the leeside of Tibetan Plateau (i.e. the southwest vortex in China) in the heavy snow case. This may shed a light on the precipitation anomalies (floods) over Yangtze River Valley (Central China) and eastern Asia due to intensified baroclinic disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call