Abstract

Whole-plant corn (31 to 39% dry matter) from several locations was chopped, treated with nothing (U), Lactobacillus buchneri 40788 (4×105 cfu/g; LB), or L. buchneri (4×105 cfu/g) and Pediococcus pentosaceus (1×105 cfu/g; LBPP), and packed into quadruplicate 20-L silos to determine their effects on silage fermentation and aerobic stability after 120 d of storage. The experiment was a randomized complete block design with main effects of treatment (T), block (location; L), and T × L interaction. Dry matter recovery was different among locations but unaffected by T. The population of lactic acid bacteria was greater in LB and LBPP than in U, and the opposite was true regarding the population of yeasts. Numbers of L. buchneri (colony-forming unit equivalents), determined by a real-time quantitative polymerase chain reaction, were higher in 4 of 5 locations for LB and LBPP compared with U (T × L interaction) with an average 6.70 log cfu/g for LB and LBPP versus 4.87 log cfu/g for U. Silages inoculated with LB and LBPP had higher silage pH and higher concentrations of acetic acid and 1,2 propanediol but lower concentrations of ethanol and water-soluble carbohydrates; there was a T × L interaction for all these variables. Aerobic stability was improved by LB and LBPP (mean of 136h) compared with U (44h), but there was an interaction between T × L. In general, locations with the highest population of L. buchneri had the largest increases in acetic acid and, consequently, the greatest improvements in aerobic stability. The addition of L. buchneri 40788 alone or with P. pentosaceus resulted in similar effects on silage fermentation and aerobic stability, but the effects were variable among locations, suggesting that unidentified factors; for example, in the field or on the forage crop, may alter the effectiveness of microbial inoculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call