Abstract

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague–Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.