Abstract

This study aimed to investigate the effects of knee flexion during the preparation phase of a serve on the tennis serve performance, using inertial sensors. Thirty-two junior tennis players were divided into two groups based on their maximum knee flexion during the preparation phase of serve: Smaller (SKF) and Greater (GKF) Knee Flexion. Their racket velocity, racket height, and knee extension velocity were compared during the tennis serve. Inertial sensors tracked participants’ shank, thigh, and racket motions while performing five first, flat, and valid serves. Knee flexion was analysed during the preparation phase of serve, knee extension velocity after this phase, racket velocity just before ball impact, and racket height at impact. Pre-impact racket velocity (mean difference [MD] = 3.33 km/h, p = 0.004) and the knee extension velocity (MD = 130.30 °/s, p = 0.012) were higher in the GKF than SKF; however, racket impact height was not different between groups (p = 0.236). This study’s findings support the importance of larger knee flexion during the preparation phase of serve-to-serve performance. This motion should be seen as a contributor to racket velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.