Abstract

The effect of various factors on hepatic mitochondrial ketogenesis was investigated in the rat. A comparison of three different incubation media revealed that bicarbonate ion inhibited the rate of ketone body production and decreased the ratio of 3-hydroxybutyrate/acetoacetate. The addition of 0.8 m m calcium caused significant inhibition of ketogenesis from both octanoate (40–50%) and palmitate (25–30%) and no change in the ratio of 3-hydroxybutyrate/acetoacetate. In the presence of components of the malate/aspartate shuttle, the inhibition by calcium was 80% or more with both substrates. Experimental alteration of the respiratory state of the mitochondria from state 3 to state 4 was associated with an enhanced rate of ketogenesis. The addition of ketone bodies themselves had marked effects on the rate of ketone body production. Increasing amounts of exogenously added acetoacetate were accompanied by increasing rates of total ketone body production reflecting enhanced 3-hydroxybutyrate synthesis. In the presence of added 3-hydroxybutyrate, there was striking inhibition of ketogenesis. Rotenone, which prevents oxidation of NADH 2 via the electron transport chain, almost completely inhibited ketone body synthesis. This inhibition was partially overcome by the addition of acetoacetate which regenerates NAD + from NADH 2 during conversion to 3-hydroxybutyrate. These observations provide evidence for additional sites of metabolic control over hepatic ketogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.