Abstract
Background/Aims: Plasma norepinephrine (NE) and brain natriuretic peptide (BNP, termed BNP-45 in rats) are considered as essential neurohormones indicating heart failure progression. The purposes of this study were to examine the effects of ivabradine (IBD) on cardiac function and plasma NE and BNP-45 after chronic ischemic heart failure (CHF) in non-diabetic rats and diabetic rats. We further determined if sympathetic NE uptake-1 (a major pathway to metabolize NE) mechanism is responsible for the role played by IBD. Methods: We ligated rat's coronary artery to induce CHF; and injected streptozotocin (STZ) to induce diabetic hyperglycemia. Echocardiography was employed to determine cardiac function. We used ELISA to examine plasma NE and BNP-45; and Western Blot analysis to examine the protein levels of NE uptake-1 in sympathetic nerves. Results: CHF increased the levels of NE and BNP-45 in non-STZ rats and STZ rats. Systemic injection of IBD significantly attenuated the augmented NE and BNP-45 and impaired left ventricular function induced by CHF in those rats. This effect appeared to be less in STZ rats. A liner relation was observed between the NE/BNP-45 levels and left ventricular function after administration of IBD. Also, IBD was observed to have a recovery effect on the downregulated NE uptake-1 evoked by CHF, but to a smaller degree in STZ rats. Conclusion: Our data revealed specific signaling mechanisms by which IBD improves the cardiac function as IBD alleviates impaired NE uptake-1and thereby decreases heightened NE and BNP-45 induced by CHF. Our data also demonstrated that the effects of IBD are weakened after diabetic hyperglycemia likely due to worsen NE uptake-1 pathway. Thus, targeting sympathetic NE uptake-1 signaling molecules has clinical implications for treatment and management of CHF in diabetes. Our data were also to shed light on strategies for application of this drug because NE and BNP play an important role in regulation of progression and prognosis of CHF, and in particular, because IBD affects NE uptake-1 pathway in hyperglycemic animals to a less degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.