Abstract

Cell division in vegetative filaments of the green alga Oedogonium cardiacum is presented as an experimental system. We report on how we have used this system to study the effects of isopropyl N-phenylcarbamate (IPC) on the mitotic apparatus and on the phycoplast, a planar array of cytokinetic microtubules. Polymerization of microtubules was prevented when filaments, synchronized by a light/dark regime and chilled (2 degrees C) while in metaphase or just before phycoplast formation, were exposed to 5.5 x 10(-4) M IPC and then returned to room temperature. Spindles reformed or phycoplasts formed when these filaments were transferred to growth medium free of IPC. However, the orientation of both microtubular systems was disturbed: the mitotic apparatus often contained three poles, frequently forming three daughter nuclei upon karyokinesis; the phycoplast was often stellate rather than planar, and it sometimes was displaced to the side of both daughter nuclei, resulting in a binucleate and an anucleate cell upon cytokinesis. Our results suggest that IPC (a) prevents the assembly of microtubules, (b) increases the number of functional polar bodies, and (c) affects the orientation of microtubules in O. cardiacum. High voltage (1,000 kV) electron microscopy of 0.5-microm thick sections allowed us to visualize the polar structures, which were not discernible in thin sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.