Abstract

The influence of Fe status on cell-mediated immunity was studied in weanling mice fed on Fe-deficient (7 mg Fe/kg), Fe-sufficient (120 mg Fe/kg) and high-Fe (3000 or 5000 mg Fe/kg) diets for 7 weeks. The contact sensitivity (CS) response to dinitrofluorobenzene (DNFB), the in vivo delayed-type hypersensitivity (DTH) response to sheep erythrocytes (SRBC) and the ability of primed spleen cells to transfer DTH response to naive normal mice were suppressed in mice consuming the Fe-deficient diet. High-Fe diets (3000 or 5000 mg Fe/kg) selectively suppressed the CS response to DNFB, but the DTH response to SRBC or the transfer of DTH response by primed spleen cells to naive normal mice remained normal. Spleen cell functions associated with the expression of class II major histocompatibility (MHC) surface antigens, concanavalin A-induced interleukin-2 (IL-2) secretion or the antigen-presenting cell (APC) ability to stimulate antigen-dependent proliferation of an SRBC-specific helper T-lymphocyte clone were not altered by Fe status. However, consistent with the suppressed DTH response in the Fe-deficient mice was the suppressed concanavalin A-induced T-lymphocyte blastogenesis and the interferon-gamma (INF-gamma) production by spleen cells from mice fed on the Fe-deficient diet. Spleen cells from mice fed on excess levels of Fe in the diet secreted less INF-gamma than the control mice, although T-lymphocyte proliferation remained unaffected. Suppression of the cellular immune response associated with Fe deficiency may be related in part to impaired T-lymphocyte proliferation and INF-gamma secretion rather than to deficits in IL-2 secretion or APC function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.