Abstract

As global climate change is altering the distribution range of macroalgae across the globe, it is critical to assess its impact on species range shifts to inform the biodiversity conservation of macroalgae. Latitude/environmental gradients could cause intraspecific variability, which may result in distinct responses to climate change. It remains unclear whether geographical variation occurs in the response of species' populations to climate change. We tested this assumption using the brown alga Sargassum thunbergii, a habitat-forming macroalgae encompassing multiple divergent lineages along the Northwest Pacific. Previous studies revealed a distinct lineage of S. thunbergii in rear-edge populations. Given the phylogeographic structure and temperature gradients, we divided these populations into the southern and northern groups. We assessed the physiological responses of the two groups to temperature changes and estimated their niche differences using n-dimensional hypervolumes. A higher photosynthetic rate and antioxidative abilities were detected in the southern group of S. thunbergii than in the northern group. In addition, significant niche differentiation was detected between the two groups, suggesting the possibility for local adaptation. Given these results, we inferred that the southern group (rear-edge populations) may be more resilient to climate change. To examine climate-driven range shifts of S. thunbergii, we constructed species- and lineage-level species distribution models (SDMs). Predictions of both levels showed considerable distribution contracts along the Chinese coasts in the future. For the southern group, the lineage-level model predicted less habitat loss than the species-level model. Our results highlight the importance of considering intraspecific variation in climate change vulnerability assessments for coastal species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call