Abstract

Integrated damping mechanics for composite laminates with constrained interlaminar layers of polymer damping materials are developed. Discrete layer damping mechanics are presented for composite materials with damping layers, in connection with a semi-analytical method for predicting the modal damping in simply-supported specialty composite plates. Several application cases are used to demonstrate the advantages of the method. Damping predictions for graphite-epoxy composite plates of various laminations demonstrate the potential for higher damping than geometrically equivalent aluminum plates. The effects of aspect ratio, damping layer thickness, and fiber volume ratio on static and dynamic characteristics of the composite plate are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.