Abstract

Two experiments are described in which eye movements were monitored as subjects performed a simple target-spotting task under conditions of intermittent illumination produced by varying the display-screen frame rate on a computer VDU. In Experiment 1, subjects executed a saccade from a fixation point to a target which appeared randomly at a fixed eccentricity of 14 character positions to the left or right. Saccade latency did not differ reliably as a function of screen refresh rate, but average saccade extent at 70 Hz and 110 Hz was reliably shorter than at 90 Hz and 100 Hz. Experiment 2 examined the same task using a range of target eccentricities (7, 14, and 28 character positions to the left and right) and across a wider range of screen refresh rates. The results confirmed the curvilinear relationship obtained in Experiment 1, with average saccade extent reliably shorter at refresh rates of 50 Hz and 125 Hz than at 75 Hz and 100 Hz. While the effect was greater for remote targets, analyses of the proportional target error failed to show a reliable interaction between target eccentricity and display refresh rate. In contrast to Experiment 1, there was a pronounced effect of refresh rate on saccade latency (corrected for time to write the screen frame), with shorter latencies at higher refresh rates. It may be concluded that pulsation at frequencies above fusion disrupts saccade control. However, the curvilinear functional relationship between screen refresh rate and saccade extent obtained in these studies differs from previously reported effects of intermittent illumination on the average size of "entry saccades" (the first saccade to enter a given word) in a task involving word identification (Kennedy & Murray, 1993a, 1996). This conflict of data may arise in part because within-word adjustments in viewing position, which are typical of normal reading, influence measures of average saccade extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.