Abstract
A nonlinear model is proposed to study low-frequency magnetoelectric (ME) effects in layered magnetostrictive-piezoelectric composites, taking into account the effects of interface misfit strain and surface stress. As a specific case, L-T mode of Terfenol-D/lead zirconate titanate (PZT) composites is investigated. The results show that flexural deformation can suppress the ME voltage coefficient, especially for elevated Terfenol-D volume fraction. Interface misfit strain demonstrates a notable impact on the ME voltage coefficient, and this strain-mediated ME effect is intensified with increasing interface misfit strain. Owing to residual surface tension, the ME voltage coefficient is found to be size-dependent when the thickness of Terfenol-D/PZT layered composite reduces to the nanoscale. In addition, substrate effect on ME voltage coefficients is evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.