Abstract

Precipitation variability has been predicted to increase in a global warmer climate, and is expected to greatly affect plant growth, interspecies interactions, plant community composition, and other ecosystem processes. Although previous studies have investigated the effect of intra-annual rainfall variability on plant growth and ecosystem dynamics, the impacts of interannual rainfall variability remain understudied. This paper uses satellite data and develops a new mechanistic model to investigate the response of tree–grass composition to increasing interannual rainfall variability in arid to sub-humid ecosystems along the Kalahari Transect in Southern Africa. Both satellite data and model results show that increasing interannual rainfall fluctuations favor deep-rooted trees over shallow-rooted grasses in drier environments (that is, mean annual rainfall, MAP 900–1000 mm). Trees have a competitive advantage over grasses in dry environments because their generally deeper root systems allow them to have exclusive access to the increased deep soil water resources expected to occur in wet years as a result of the stronger interannual rainfall fluctuations. In relatively wet environments, grasses are favored because of their high growth rate that allows them to take advantage of the window of opportunity existing in years with above average precipitation and thus increase fire-induced tree mortality. Thus, under increasing interannual rainfall fluctuations both direct effects on soil water availability and indirect effects mediated by tree–grass interactions and fire dynamics are expected to play an important role in determining changes in plant community composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.