Abstract
Little is known about changes that occur to phase locking in the auditory nerve following exposure to intense and damaging levels of sound. The present study evaluated synchronization in the discharge patterns of cochlear nerve units collected from two groups of young chicks (Gallus domesticus), one shortly after removal from an exposure to a 120-dB, 900-Hz pure tone for 48 h and the other from a group of non-exposed control animals. Spontaneous activity, the characteristic frequency (CF), CF threshold and a phase-locked peri-stimulus time histogram were obtained for every unit in each group. Vector strength and temporal dispersion were calculated from these peri-stimulus time histograms, and plotted against the unit's CF. All parameters of unit responses were then compared between control and exposed units. The results in exposed units revealed that CF thresholds were elevated by 30-35 dB whereas spontaneous activity declined by 24%. In both control and exposed units a high degree of synchronization was observed in the low frequencies. The level of synchronization above approximately 0.5 kHz then systematically declined. The vector strengths in units recorded shortly after removal from the exposure were identical to those seen in control chicks. The deterioration in discharge activity of exposed units, seen in CF threshold and spontaneous activity, contrasted with the total absence of any overstimulation effect on synchronization. This suggested that synchronization arises from mechanisms unscathed by the acoustic trauma induced by the exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.