Abstract

A new systematic iterative analytical procedure is presented to predict the dynamic response of composite sandwich plates subjected to low-velocity impact phenomenon with/without initial in-plane forces. In this method, the interaction between indenter and sandwich panel is modeled with considering the exponential equation similar to the Hertzian contact law and using the principle of minimum potential energy and the energy-balance model. In accordance with the mentioned procedure and considering initial in-plane forces, the unknown coefficients of the exponential equation are obtained analytically. Accordingly, the traditional Hertzian contact law is modified for use in the composite sandwich panel with the flexible core under biaxial pre-stresses. The maximum contact force using the two-degrees-of-freedom (2DOF) spring-mass model is calculated through an iterative systematic analytical process. Using the present method, in addition to reducing the runtime, the problem-solving process is carried out with appropriate convergence. The numerical results of the analysis are compared with the published experimental and theoretical results. The effects of some important geometrical and physical parameters on contact force history are examined in details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.