Abstract
During one-lung ventilation (OLV), hypoxic pulmonary vasoconstriction (HPV) reduces venous admixture and attenuates the decrease in arterial oxygen tension by diverting blood from the nonventilated lung to the ventilated lung. In vitro, desflurane and isoflurane depress HPV in a dose-dependent manner. Accordingly, we studied the effects of increasing concentrations of desflurane and isoflurane on pulmonary perfusion, shunt fraction, and PaO(2) during OLV in vivo. Fourteen pigs (30-42 kg) were anesthetized, tracheally intubated, and mechanically ventilated. After placement of femoral arterial and thermodilution pulmonary artery catheters, a left-sided double-lumen tube (DLT) was placed via tracheotomy. After DLT placement, FIO(2) was adjusted at 0.8 and anesthesia was continued in random order with 3 concentrations (0.5, 1.0, and 1.5 minimal alveolar concentrations) of either desflurane or isoflurane. Differential lung perfusion was measured with colored microspheres. All measurements were made after stabilization at each concentration. Whereas mixed venous PO(2), mean arterial pressure, cardiac output, nonventilated lung perfusion, and shunt fraction decreased in a dose-dependent manner, PaO(2) remained unchanged with increasing concentrations of desflurane and isoflurane during OLV. In conclusion, increasing concentration of desflurane and isoflurane did not impair oxygenation during OLV in pigs. In an animal model of one-lung ventilation, increasing concentrations of desflurane and isoflurane dose-dependently decreased shunt fraction and perfusion of the nonventilated lung and did not impair oxygenation. The decreases in shunt fraction are likely the result of anesthetic-induced marked decreases in cardiac output and mixed venous saturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.