Abstract
Processes that govern environmental mechanisms including fate, transport, and exposure are generally non-linear. Characterization models in life cycle impact assessment (LCIA), however, often linearize such processes, while the implications of linearizing non-linear processes have not been fully understood. Recently, non-linear models have been incorporated into characterization modeling, allowing the opportunity for a comparison. Here, we test potential effects of incorporating three types of non-linear processes into life cycle assessment (LCA): emission rate, environmental fate, and exposure-response. We compare the characterized results of human health impact due to non-cancer effects using (1) USEtox, a conventional, steady-state model and (2) the CLiCC suite, which employs dynamic emissions profiles, non-steady state fate and transport, and no-effect exposure thresholds. Under constant emission rates, the two approaches display comparable results over a long period of time. When significant temporal variations are introduced to emission rates, however, the results from the two approaches start to deviate. On the one hand, pulse emissions averaged over time tend to show lower human health impacts under USEtox as compared to CLiCC suite, as the level of exposure shortly after the pulse emission temporarily shifts the dose-response regime to a steeper territory in the curve. On the other hand, USEtox, in the absence of no-effect exposure thresholds, tends to show higher human health impacts compared to CLiCC suite for low-level emissions with little temporal variation. Our results call for a careful interpretation of characterized results, especially when the emissions are known to exhibit large temporal variations.
Highlights
Life cycle assessment (LCA) is a method that quantifies the environmental impacts associated with the full life cycle of products
We introduce the CLiCC suite, a collection of models developed under the Chemical Life Cycle Collaborative (CLiCC) initiative, designed to address these non-linearity issue
We evaluate the effects of incorporating non-linear processes in human health characterization due to non-cancer effects by comparing and interpreting the characterization results of hypothetical cases calculated using USEtox and CLiCC suite
Summary
Life cycle assessment (LCA) is a method that quantifies the environmental impacts associated with the full life cycle of products. Life cycle impact assessment (LCIA), a phase of LCA, relates the pollutants emitted and the natural resources extracted throughout the life cycle with the environmental damages that they create (ISO, 2006). The suite of biophysical processes under which environmental damages are materialized from environmental emissions, which is collectively referred to as “environmental mechanism” (ISO, 2006), involves various non-linear aspects: fluctuations in emission rates over time, seasonal variations of environmental fate and transport processes, and dose-response relationships. Linearity Should Be Carefully Evaluated the relationship of two variables (e.g., emission and characterized impact) of a process or a model that cannot be plotted along a straight line in a Cartesian plane (see Supplementary Material Part 1 for more details). LCIA models often linearize these non-linear processes, resulting in input and output variables of interest move on a straight line in a graph. Likewise, fluctuating emission rates are typically averaged and assumed as a fixed rate over time
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.