Abstract

The purpose of this study was to evaluate temporal changes in skin responses following exposure to moisture alone or moisture in combination with mechanical loading. Comparison cohort with a repeated-measures design. The sample comprised 12 healthy volunteers. Participants were purposely sampled from 2 different age groups; half were 32 to 39 years old and half were 50 to 62 years old. Participants identified as White, Black, or mixed; 83% (n = 10) identified as White; 8 (67%) were female. Four sites at the sacrum were challenged with the application of specimens taken from 2 absorbent products; the pad specimens were applied dry or saturated with synthetic urine (SU; pH = 8); a further site from the sacral skin was also selected and used as a control. Skin assessments were performed at different points in time: (1) 60 minutes after exposure to dry or SU-saturated pad specimens; (2) 60 minutes after exposure to pads and mechanical loading (application of pressure in the form of 45°C high sitting); and (3) 30 minutes after removal of all pads (recovery period). Outcome measures were transepidermal water loss (TEWL), stratum corneum (SC) hydration, erythema, pH, and skin inflammatory biomarkers measured at each of the time points described earlier. The control site and those exposed to dry pads showed minimal time-dependent changes irrespective of the parameter investigated. In contrast, significant increases in TEWL (P = .0000007) and SC hydration responses (P = .0000007) were detected at the sites under absorbent pad specimens after saturation with SU (exposure to moisture). In some participants, TEWL and SC hydration parameters were significantly higher during pressure application. Skin pH remained in the mildly acidic range throughout the test session, and no consistent trends were observed with erythema. Skin inflammatory biomarkers also exhibited considerable variability across participants; none changed significantly over time. Significant differences (P = .02) were also detected following the exposure of moisture in combination with pressure. We evaluated an array of parameters to identify changes following skin exposure to 2 absorbent pads in the presence and absence of SU and mechanical loading. Analysis revealed changes in skin barrier properties in the presence of moisture and/or pressure. This observation suggests a need for frequent pad changing as well as periods of skin off-loading to protect the skin health of individuals with incontinence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call