Abstract

The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. An inverse pyramid IMRT field, consisting of six regular and elongated 3 × 20 cm(2) field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 × 5 cm(2) field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 × 5 cm(2). On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 × 20 cm(2) at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing field size and depth. Surprisingly a composite IMRT beam consisting of 20 adjacent strip segments also produced a significant orientational dependence of film response, notwithstanding the large total field size of 20 × 20 cm(2). This analysis allowed the development of a hypothesis about the physics behind the orientational dependence of film response in general and to formulate precautions when using film dosimetry in the dosimetric verification of multibeam treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call