Abstract

Several studies have demonstrated suppression of aortic atherosclerosis by insulin like growth factor-1 (IGF-1) in hypercholesterolemic rabbits. Though a recent study has reported that IGF-1 exerts anti-atherogenic effects in coronary arteries, the mechanisms of IGF-1 in coronary arteries need to be further verified. Studies about insulin like growth factor binding protein-2 (IGFBP-2) in atherosclerosis are rarely. The objective of this study is to examine the effects of IGF-1 and IGFBP-2 on the atherosclerosis development in the aorta and coronary arteries of the high-cholesterol diet (HCD)-fed rabbits. New Zealand white rabbits were fed either normal chow (n = 5) or a diet containing 1.0 % cholesterol (n = 18) for 12 weeks. Cholesterol-fed rabbits were given IGF-1 or IGFBP-2 or saline intravenously (each n = 6) for 10 weeks. The results revealed that IGF-1 decreased total cholesterol (TC) and low-density lipoprotein (LDL) levels (p < 0.05), whereas IGFBP-2 did not. IGF-1 significantly attenuated atherosclerotic lesions and reduced accumulated macrophages within the coronary artery plaques, whereas IGFBP-2 deteriorated these changes. Moreover, IGF-1 reduced serum platelet-activating factor acetylhydrolase levels, C reactive protein (CRP), and inhibited the protein expression levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). IGFBP-2 elevated serum 8-hydroxy-2′-deoxyguanosine levels, CRP, and promoted the protein expression levels of TNF-α and IL-6. In conclusion, IGF-1 can substantially suppress plaque formation in coronary arteries with a marked inhibition of macrophage accumulation likely via its anti-inflammatory properties, whereas IGFBP-2 plays an opposite effect on atherosclerosis. The present study highlighted a theoretical basis for pharmacological treatment of atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call