Abstract

BackgroundDecreased oxygenation of muscle may be accentuated during exercise at high altitude. Monitoring the oxygen saturation of muscle (SmO2) during hand grip exercise using near infrared spectroscopy during acute exposure to hypoxia could provide a model for a test of muscle performance without the competing cardiovascular stresses that occur during a cycle ergometer or treadmill test. The purpose of this study was to examine and compare acute exposure to normobaric hypoxia versus normoxia on deoxygenation and recruitment of the flexor digitorum superficialis (FDS) during submaximal intermittent handgrip exercise (HGE) in healthy adults.MethodsTwenty subjects (11 M/9 F) performed HGE at 50% of maximum voluntary contraction, with a duty cycle of 2 s:1 s until task failure on two occasions one week apart, randomly assigned to normobaric hypoxia (FiO2 = 12%) or normoxia (FiO2 = 21%). Near-infrared spectroscopy monitored SmO2, oxygenated (O2Hb), deoxygenated (HHb), and total hemoglobin (tHb) over the FDS. Surface electromyography derived root mean square and mean power frequency of the FDS.ResultsHypoxic compared to normoxic HGE induced a lower FDS SmO2 (63.8 ± 2.2 vs. 69.0 ± 1.5, p = 0.001) and both protocols decreased FDS SmO2 from baseline to task failure. FDS mean power frequency was lower during hypoxic compared to normoxic HGE (64.0 ± 1.4 vs. 68.2 ± 2.0 Hz, p = 0.04) and both decreased mean power frequency from the first contractions to task failure (p = 0.000). Under both hypoxia and normoxia, HHb, tHb and root mean square increased from baseline to task failure whereas O2Hb decreased and then increased during HGE. Arterial oxygen saturation via pulse oximetry (SpO2) was lower during hypoxia compared to normoxia conditions (p = 0.000) and heart rate and diastolic blood pressure only demonstrated small increases. Task durations and the tension-time index of HGE did not differ between normoxic and hypoxic trials.ConclusionHypoxic compared to normoxic HGE decreased SmO2 and induced lower mean power frequency in the FDS, during repetitive hand grip exercise however did not result in differences in task durations or tension-time indices. The fiber type composition of FDS, and high duty cycle and intensity may have contributed greater dependence on anaerobiosis.

Highlights

  • Optimal oxygen delivery and utilization by skeletal muscle is essential to maximize muscle performance and exercise capacity

  • flexor digitorum superficialis (FDS) Oxygenated hemoglobin (O2Hb) decreased from baseline to 40th percentile of task duration (p = 0.008) followed by an increase in FDS O2Hb from 40th percentile of task duration to task failure (p = 0.001) during hypoxic and normoxic handgrip exercise (HGE)

  • In conclusion, this study demonstrated that acute exposure to normobaric hypoxia results in a greater decline in Oxygen saturation of muscle (SmO2) and a greater level of muscle fatigue as evidenced by decreased mean power frequency of the FDS during a high duty cycle intermittent HGE to task failure

Read more

Summary

Introduction

Optimal oxygen delivery and utilization by skeletal muscle is essential to maximize muscle performance and exercise capacity. High-intensity intermittent static contractions of adductor pollicis muscle resulted in reduced endurance times during hypobaric hypoxia compared with normoxia [5,6,7]. A review by Perrey & Rupp outlined that acute hypoxic exposure when compared to normoxic conditions leads to a decline in muscular endurance time when protocols employed submaximal intermittent isometric contractions [8]. Acute hypoxia exposure on maximal voluntary force generating capacity of small muscle groups appears to have minimal to no reduction in force production and the rate of decline of force compared to normoxic conditions [6, 9]. The purpose of this study was to examine and compare acute exposure to normobaric hypoxia versus normoxia on deoxygenation and recruitment of the flexor digitorum superficialis (FDS) during submaximal intermittent handgrip exercise (HGE) in healthy adults

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.