Abstract

Mechanical loads, particularly those generated by skeletal muscle, play a significant role in determining long-bone shape and strength, but it is less clear how these loads influence the morphology of flat bones like the scapula. While scapular morphology has been shown to vary with locomotor mode in mammals, this study seeks to better understand whether genetically modified muscle size can influence scapular shape in the absence of significant locomotor differences. The soft- and hard-tissue morphological characteristics were examined in 11 hypermuscular, mutant (myostatin-deficient), 20 heterozygote, and 15 wild-type mouse shoulders. Body mass did not significantly differ among the genotype groups, but homozygous mutant and heterozygote mice had significantly larger shoulder muscles than wild-type mice. Mutant mice also differed significantly from the wild-type controls in several aspects of scapular size and shape, including glenohumeral joint orientation, total scapular length, superior border length, and supraspinous and infraspinous fossa length. Conversely, several traits describing superoinferior scapular breadth measures (e.g. total breadth and dorsal scapular fossa breadth) did not significantly differ between mutant and wild-type mice. Since the intrinsic musculature of the scapula is oriented in a mediolateral fashion, it follows that mediolaterally configured hard-tissue features like scapular length were most distinct among genotype groups. As had been noted previously with long bones, this study demonstrates that genetically enhanced muscle size has marked effects on the morphological characteristics of the shoulder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.