Abstract
Sensory systems are widely known to exhibit adaptive mechanisms. Vision is no exception to input dependent changes in its sensitivity. Recent animal work demonstrates enhanced connectivity between neurons in the visual cortex. The purpose of the present experiment was to evaluate a human model that noninvasively alters the amplitude of the N1b component in the visual cortex of humans by means of rapid visual stimulation. Nineteen participants (Mage = 24 years; 52.6% male) completed a rapid visual stimulation paradigm involving black and white reversal checkerboards presented bilaterally in the visual field. EEG data was collected during the visual stimulation paradigm, which consisted of four main phases, a pre-tetanus block, photic stimulus, early post-tetanus, and late post-tetanus. The amplitude of the N1b component of the pre-tetanus, early post-tetanus and late post-tetanus visual evoked potentials were calculated. Change in N1b amplitude was calculated by subtracting pre-tetanus N1b amplitude from early and late post-tetanus. Results demonstrated a significant difference between pre-tetanus N1b (M = −0.498 µV, SD = 0.858) and early N1b (M = −1.011 µV, SD = 1.088), t (18) = 2.761, p = 0.039, d = 0.633. No difference was observed between pre-tetanus N1b and late N1b (p = 0.36). In conclusion, our findings suggest that it is possible to induce changes in the amplitude of the visually evoked potential N1b waveform in the visual cortex of humans non-invasively. Additional work is needed to corroborate that the potentiation of the N1b component observed in this study is due to similar mechanisms essential to prolonged strengthened neural connections exhibited in cognitive structures of the brain observed in prior animal research. If so, this will allow for the examination of strengthened neural connectivity and its interaction with multiple human sensory stimuli and behaviors.
Highlights
The visual cortex has been shown to exhibit input dependent adaptations
The human visual cortex has been shown to adapt to color contrast [1], orientation [2], and patterns [3] in a selective fashion
It is not clearly understood whether these adaptations have to be specific to a particular aspect of visual input
Summary
The visual cortex has been shown to exhibit input dependent adaptations. The human visual cortex has been shown to adapt to color contrast [1], orientation [2], and patterns [3] in a selective fashion. It is not clearly understood whether these adaptations have to be specific to a particular aspect of visual input. The processing of sensory information in simple tasks (e.g., visual sensory stimuli) is further modulated by attention [4]. Altered processing of sensory information can impact the activity of other systems (e.g., memory systems) [5], the N1b component may be a marker indicating the effects of
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.